Section 9302

Oil Response in Fast Water Currents: A Decision Tool

OIL RESPONSE IN FAST WATER CURRENTS: A DECISION TOOL

December 2002

U.S. COAST GUARD RESEARCH AND DEVELOPMENT CENTER GROTON, CT 06340-6048

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

This report does not constitute a standard, specification, or regulation.

M.B.M.D

Marc B. Mandler, Ph.D. Technical Director United States Coast Guard Research & Development Center 1082 Shennecossett Road Groton, CT 06340-6048 U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6048

Report No. CG-D-03-03

Oil Response in Fast Water Currents: A Decision Tool

December 2002

This document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

Prepared for:

U.S. Department of Transportation United States Coast Guard Marine Safety and Environmental Protection (G-M) Washington, DC 20593-0001

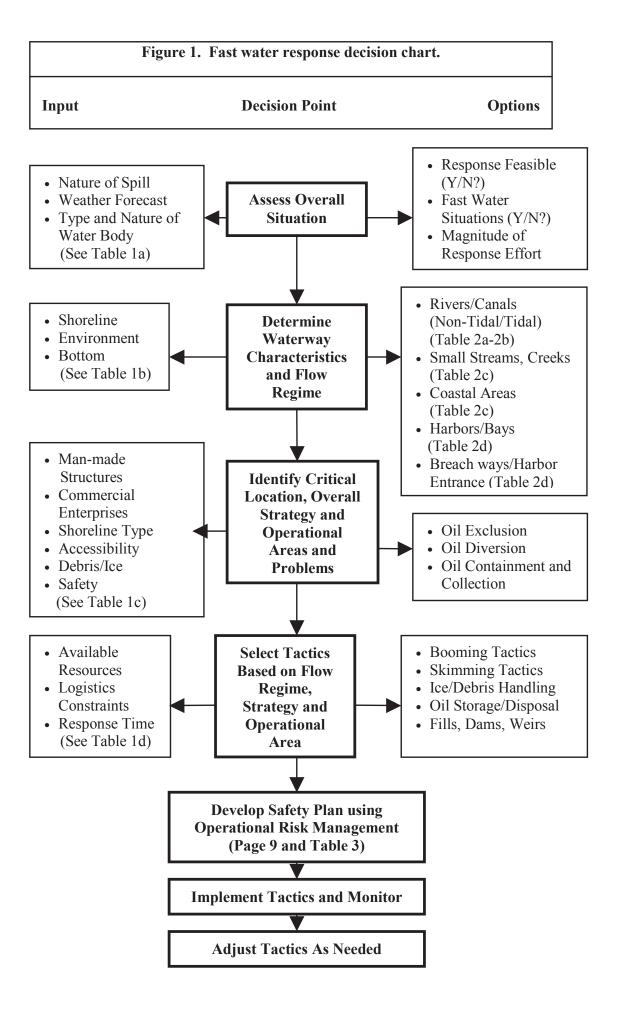
Technical Report Documentation Page

1. Report No. CG-D-03-03	2. Government Accession Number ADA415830	3. Recipient's Catalog	j No.
4. Title and Subtitle OIL RESPONSE IN FAST WATER CURRENTS: A DECISION TOOL		 5. Report Date December 2002 6. Performing Organizatio 	n Code
		Project No. 4120.12	
7. Author(s) Kurt Hansen, Peter Tebeau		8. Performing Organizatio R&DC 572	n Report No.
9. Performing Organization Name and Address U.S. Coast Guard Research	Potomac Management Group	10. Work Unit No. (TR/	AIS)
and Development Center 1082 Shennecossett Road Groton, CT 06340-6048	510 King Street Alexandria, VA 22314	11. Contract or Grant	No.
 12. Sponsoring Organization Name and Address U.S. Department of Transportation United States Coast Guard Marine Safety and Environmental Protection (G-M) Washington, DC 20593-0001 		13. Type of Report & Final Report	Period Covered
		14. Sponsoring Agend Commandant (G-M U.S. Coast Guard H Washington, DC 20	OR) Ieadquarters
15. Supplementary Notes The R&D Center's technical point of contact is Kur khansen@rdc.uscg.mil.		rt Hansen, 860-441-	-2865, email:
16. Abstract (MAXIMUM 200 WORDS) This decision tool is a companion manual for the report, "Oil Response in Fast Currents, A Field Guide" (Report CG-D-01-02). This booklet provides tables, pictures and figures, mostly from out of the guide, that can be used to make decisions in the field or command post. Users should refer to the guide for additional details concerning decision methods, techniques and equipment.			
-		18. Distribution Stateme	
		This document is availa public through the Nat Information Service, Spr 22161	tional Technical
19. Security Class (This Report) UNCLASSIFIED	20. Security (This page) UNCLASSIFIED	21. No. of Pages 28	22. Price
Form DOT F 1700.7 (8/72) Reproduction of form and completed page is authorized			

OVERVIEW OF THE OIL SPILL RESPONSE: FAST WATER DECISION TOOL

Purpose

This document provides oil spill response personnel with a job aid for organizing and implementing oil spill containment and cleanup measures in a fast water environment. Fast water refers to any situation where river, harbor or estuary surface current velocities are expected to exceed one knot. Experience and research have shown that special strategies and tactics are warranted in channeling, containing and recovering spilled oil, and safety should be a main concern.


This decision tool is a companion document to the more comprehensive report, "Oil Spill Response in Fast Currents, a Field Guide," published by the Coast Guard R&D Center in 2002, which is available from the National Technical Information Service in Springfield, VA. This decision tool assumes that the user will have read and understood the material contained in the parent Field Guide. This tool has been limited to essential graphics and tables to refresh the responder's memory, allow him/her to quickly assess the situation and formulate an action plan, and communicate this plan to other personnel.

Organization

The decision tool is organized to provide information for developing fast water response strategies. This process is depicted in the decision flow diagram in Figure 1. For each step in the process, the necessary input information and options are specified. Tables and figures provide the primary options open to the responder, and graphically depict various boom and skimmer tactics for oil exclusion, diversion and recovery. In addition, a set of easy to use graphics and tables is provided to allow the responder to compute key deployment parameters such as boom length, deflection angles, mooring line tension and the number of anchors required.

Relation to Other Spill Response Documents and Resources

In addition to familiarity with the Field Guide, responders should be familiar with the basic National Interagency Incident Management System/Incident Command System (NIIMS/ICS) spill response doctrine as outlined in the USCG Incident Management Handbook. The Area Contingency Plan should also be available and consulted for information on sensitive resource locations and environmental data such as anticipated current velocities, oil behavior and natural collection points. The responder should also consult with the NOAA Scientific Support Coordinator (SSC), local First Responders, as well as harbormasters and local mariners to gather information to verify the viability of the strategy and tactics arrived at using this decision tool.

Selection Factor	Related Sub-Factors	Info Sources
Nature of the spill	 Amount and type of oil Time and place of oil impact (ETA) Weathering/emulsion issues History of spills 	 PolReps Area Contingency Plan NOAA SSC
Weather forecast	 Wind affects oil drift and sea state Rain affects currents in rivers and coastal areas Temperature, oil evaporation rate and people endurance Visibility 	 On-Scene Observations Local forecasts Marine forecasts NOAA SSC
Type and Nature of Water body	 River, lake, swamp, inlet, bay, ocean, etc. Presence of debris or ice Navigable or not, traffic type & density 	 NOAA Charts Local Responders

Table 1b. Determine waterway characteristics and flow regime.

Selection Factor	Related Sub-Factors	Info Sources
Shoreline	 River (winding, width, etc.), estuary, strait, headland, harbor, inlet, island, etc. Natural collection points Sensitive areas 	 Area Contingency Plan NOAA Charts/ ESI Maps
Environment	 Current speed and direction Tidal action: height, cycle time, reversing currents, slack water, etc. Waves: height, wave direction, period, breaking or non-breaking, etc. 	 On-Scene Observations Real-time Measurements NOAA SSC
Bottom	 Water depth and contours Bottom type (relating to habitat damage and anchoring potential) 	 NOAA Hydro Charts ESI Maps

Table 1c.	Identify critical location, strategy, and operational areas and
	problems.

Selection Factor	Related Sub-Factors	Info Sources
Man-made structures and commercial enterprises	 Piers, breakwaters, bulkheads, bridges, etc. Water intakes (drinking water, desalination, etc.) Floating houses, casinos, commercial and recreational traffic Commercial logs, fish hatcheries, etc. High volume water traffic 	 NOAA Hydro Charts Local harbormaster Port authority Area Contingency Plan
Shoreline type	 Salt marshes and mangroves, sheltered tidal flats, sheltered rocky coasts, exposed tidal flats and vegetation, gravel beaches, beaches Other threatened or historical areas 	 Area Contingency Plan NOAA SSC ESI Maps
Accessibility	 Land accesses (bridges, roads, shoreline grade, shoreline vegetation, etc.) Water access (boat ramps, marinas, fuel, boat draft, specialty vehicles such as jet boats, air cushion vehicles, airboats, etc. Air accesses (airports and areas for helicopters) Approval may be needed 	 NOAA Hydro Charts Local harbormaster Port authority Area Contingency Plan
Debris/Ice	Collection and disposal proceduresNatural Collection Points	First RespondersArea Cont. Plan
Safety	 Personnel Safety Site specific issues such as accidental ignition sources 	 First Responders Area Contingency Plan

Table 1d.Select tactics based on flow regime, strategy and
operational area.

Selection Factor	Related Sub-Factors	Info Sources
Available resources/ Logistics (Response Time to Plan and Deploy)	 Response organizations: On Scene Coordinator (OSC), Responsible Party (RP), Oil Spill Response Organization (OSRO), etc. Estimated Time of Deployment (ETD) Response equipment, locations and availability (effectiveness in the fast-water conditions) Boats (HP for speed & towing in currents) Response personnel, their training, location & availability (experience in swift currents) Logistics support network & equipment Repair and Maintenance facilities Communications 	 USCG Incident Management Handbook Area Contingency Plan Vessel/Facility Response Plan Local OSRO

Scenario	Amplifying Information	Tactics
Rivers/Canal (Non-Tidal): Depth is greater than typical boom skirt depth. May have tidal influence, but current always goes in same	Current speed dependent Vessel traffic dependent	 Single Diversion Boom (Figure 2) Current < 2 knots use boom skirt of 12 inches Current > 2 knots use boom skirt 6 inches or less
direction	Currents > 2 knots	 Cascading Diversion Boom (Figure 4) Use short skirts, short boom lengths and sufficient overlap
	Collection areas available on both sides	 Chevron Booms (Figures 6-7) Open for vessel traffic Closed if no traffic
	Currents < 2 knots and river is wide	 Single Diversion Boom Exclusion Boom for Sensitive Areas (Figure 5) Encircle & Divert to Collection Area
	Sufficient room to maneuver	Skimmers for Collection (Figures 10-11)
	Vessels not available Special Conditions Isolated Areas	Boom Vane or Flow Diverters (Figure 9) Air and Water Jets Sorbents and Pom-Poms

Table 2a. Fast current scenarios and tactics in rivers/canal (non-tidal).

Scenario	Amplifying Information	Tactics
Depth is greater than typical boom skirt depth Current reverses direction	Current speed dependent Vessel traffic dependent Special methods needed to compensate for tides	 Diversion Boom – need double set (Figure 2) Current < 2 knots use boom skirt of 12 inches Current > 2 knots use boom skirt 6 inches or less
	Currents > 2 knots	 Cascade Boom - may need double set (Figure 4) Use short skirts, short boom lengths and sufficient overlap
	Collection areas available on both sides	 Chevron - may need double set (Figures 6-7) Open for vessel traffic Closed if no traffic
	Currents < 2 knots and river is wide Isolated Areas Sufficient room to	Encircling Sorbents and Pom-Poms Skimmers (Figures 10-11)
	maneuver Vessels not available Special Conditions Isolated Areas	Boom Vane or Flow Diverters (Figure 9) Air and Water Jets Sorbents and Pom-Poms

 Table 2b. Fast current scenarios and tactics in rivers/canals-(tidal).

Scenario	Amplifying Information	Tactics
Small streams, creeks, culverts: Depth is less than boom skirt depth	Dependent upon flow rate	 Single Diversion for volume flow greater than about 10 cubic feet/second (Figure 2)
	Block for low volume flow	 Sealing Fill Dams (Figures 12-13) Weirs
	Design for volume Low Flow	 Overflow/Underflow dams Sorbents and Pom-Poms
Coastal Areas: Near shore wave dependent Includes near shore and straits Various depths Usually tidal		 Single Diversion Boom Current < 2 knots use boom skirt of 12 inches if no waves
	Currents > 2 knots	 Cascade Boom (Figure 4) Use short boom lengths and sufficient overlap
	Currents < 2 knots and river is wide	 Encircling
	Sufficient room to maneuver	 Skimmers (Figures 10-11) VOSS/SORS
	Isolated Areas	 Sorbents and Pom Poms

Table 2c. Fast current scenarios and tactics in
small streams and coastal areas.

Scenario	Amplifying Information	Tactics
Harbors/Bays: Near shore wave dependent Depth is usually greater than typical boom skirt depth	Use river techniques in specific areas Current speed dependent Vessel traffic dependent	 Single Diversion Boom (Figure 2) Current < 2 knots use boom skirt of 12 inches if no waves Current > 2 knots use boom skirt 6 inches or less if no waves
	Currents > 2 knots	 Cascade Boom (Figure 4) Use short skirts, short boom lengths and sufficient overlap
	Currents < 2 knots and area is large	Encircling
	Sufficient room to maneuver	 Skimmers (Figures 10-11)
	Special Conditions Isolated Areas	 Air and Water Jets Sorbents and Pom-Poms
Breach ways and Harbor Entrances: Various depths, Usually tidal	Current speed, vessel traffic and wave dependent	 Single Diversion Boom (Figure 2) Current < 2 knots use boom skirt of 12 inches if no waves Current > 2 knots use boom skirt 6 inches or less if no waves
	Currents > 2 knots	 Cascade Boom (Figure 4) Use short skirts (if no waves), shorts boom lengths and sufficient overlap
	Collection areas available on both sides	 Chevron Boom (Figures 6-7) Open for vessel traffic Closed if no traffic
	Block for low volume flow	 Sealing Fill Dams Weirs
	Vessels not available	 Boom Vane or Flow Diverters (Figure 9)
	Design for volume	 Overflow/Underflow dams (Figures 12-13)
	Isolated Areas	 Sorbents and Pom-Poms

Table 2d. Fast current scenarios and tactics in
harbors/bays and harbor entrances.

SAFETY

Oil spill response is an inherently hazardous operation. It involves handling a hazardous material in a marine environment often under less than ideal sea and weather conditions. Deploying, operating and retrieving heavy and cumbersome oil spill response equipment routinely requires physical exertion and subjects responders to heat and cold stress. Responding to spills in fast water environments imposes additional hazards due to the extreme loads placed on equipment and the danger of personnel being swept away in the fast currents. Coast Guard personnel must perform Operational Risk Management (ORM) as outlined in COMDTINST M35003 before initiating response actions. (see process below).

Operational Risk Management Process

- 1. Identify Mission Tasks
- 2. Identify Hazards
- 3. Assess Risks
- 4. Identify Options Tables
- 5. Evaluate Risk vs. Gain
- 6. Execute Decision
- 7. Monitor Situation

Table 3 summarizes the major hazards, potential injuries and risk control measures associated with fast-water oil spill response. The water hazards are defined in some detail as these are the single most dangerous hazards associated with fast water response.

If an individual should accidentally fall in the water, there are a number of things that both the victim and rescuers should remember:

- Don't swim against the current. Swim perpendicular.
- Swim on back, feet downstream.
- Use hands and feet to fend off obstructions.
- Do not tie rope around swimmer or rescuer.
- Angle rescue lines down current.
- Stay on upstream side of the line.
- Never clip into the line.

Hazard	Injury Potential	Control
Slips, Trips and Falls	Broken limbs, lacerations, head injuries	Awareness, protective clothing, safety lines
Ergonomic	Back injury, joint injuries, hernias	Proper lifting methods, lifting devices
Heat and Cold Stress	Frost bite, hypothermia, heat stroke	Proper clothing, nutrition, rest, & medical monitoring
Flammability – Fire & Explosion	Death, severe burns, broken limbs, loss of eyes	Awareness, proper ventilation, monitoring
Oil Toxicity	Eye/skin irritation, nausea, dizziness, long term effects	Air monitoring, respiratory protection, gloves, coveralls
Line Hazards	Death, loss of limbs & eyes, broken limbs	Adequate line strength, safety observer, knife available
Heavy Equipment Hazards	Damage to eyes, hearing loss, exhaust inhalation, cuts and abrasions	Eye and ear protection, secure loose clothing, stay clear of danger points/ exhaust
Water (drowning)	 Critical - death, hypothermia Consider the following: Don't swim against current, swim perpendicular Swim on back, feet downstream Use hands and feet to fend off obstructions Do not tie rope around swimmer or rescuer Angle rescue lines down current Stay on upstream side of the line Never clip into the line 	 Buddy System Life jackets Cold weather gear Fall restraints Life rings, boat hooks Rescue boats Avoid waders Bicycle helmets can be substituted for hardhats only if no overhead hazards exits Avoid slip on fireman boots Avoid loose clothing

Table 3. Fast-water oil spill response hazard summary.

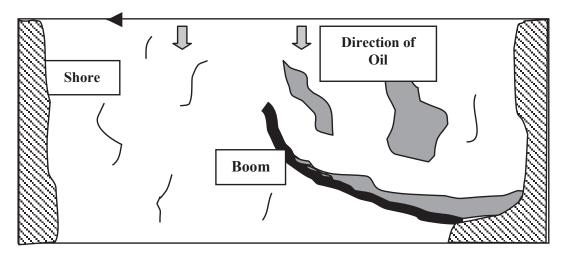


Figure 2. Single diversion boom.

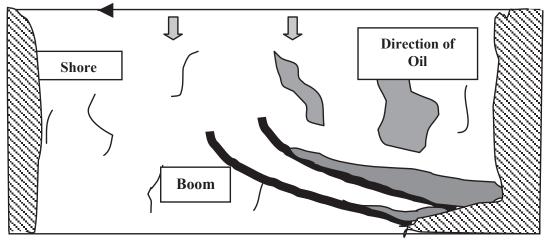


Figure 3. Double boom.

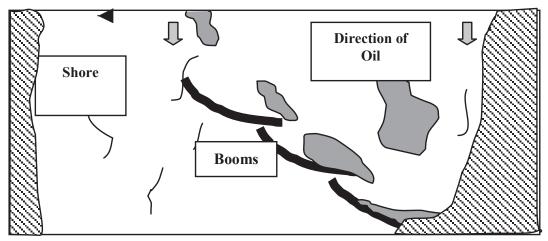


Figure 4. Cascade boom.

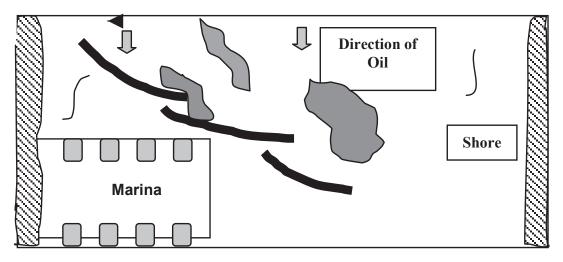


Figure 5. Exclusion boom.

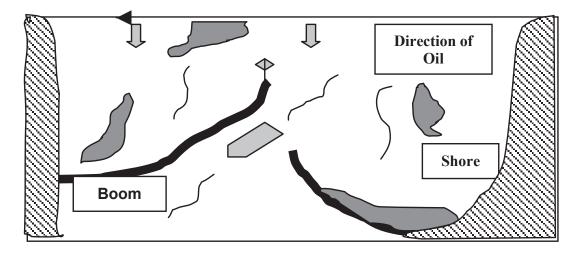
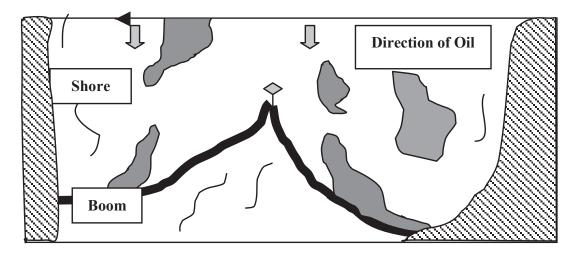



Figure 6. Open chevron boom.

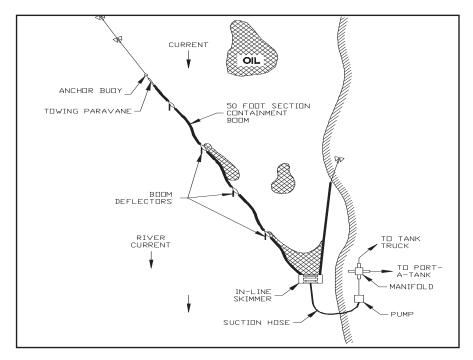


Figure 8. Boom deflectors can be used without multiple anchors.

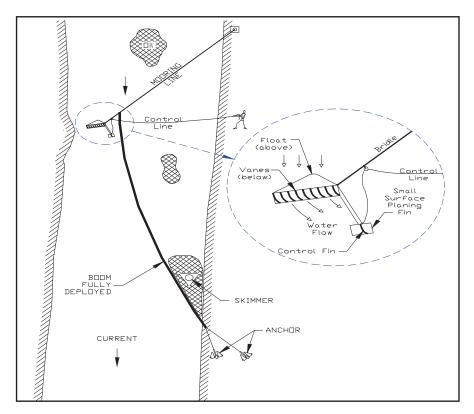


Figure 9. Boom vane deploys and retrieves deflection boom from shore to allow vessel passage.

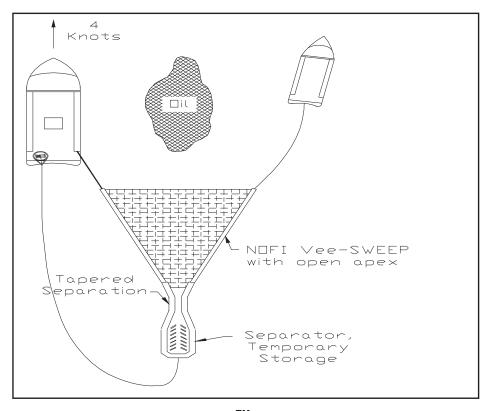


Figure 10. The NOFI Vee Sweep[™] with tapered channel separator.

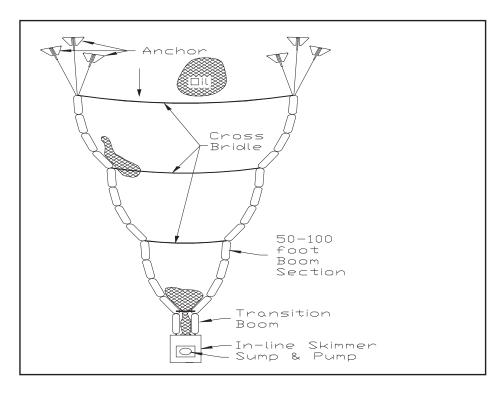


Figure 11. Wide-mouth V-shape boom with attached skimmer.

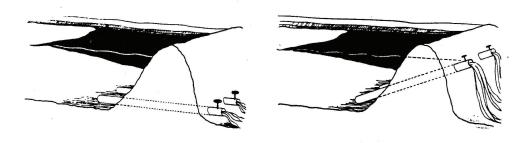


Figure 12. Earth underflow dam.

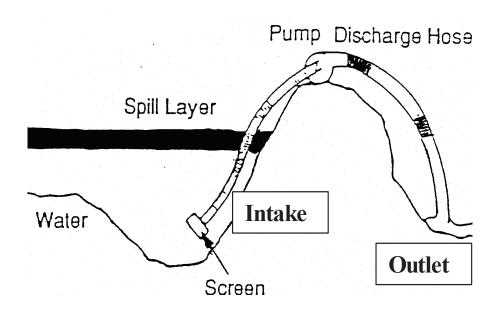


Figure 13. Overflow dam.

HYDRODYNAMIC CONSIDERATIONS AND BOOMING RESOURCES

In assessing the overall feasibility of implementing a fast water booming tactic, it is necessary to determine key hydrodynamic parameters and assess the adequacy of on-scene resources based on these parameters. The definition's process for accomplishing this is depicted in Figure 14, which outlines a procedure for determining the necessary parameters.

Definitions:

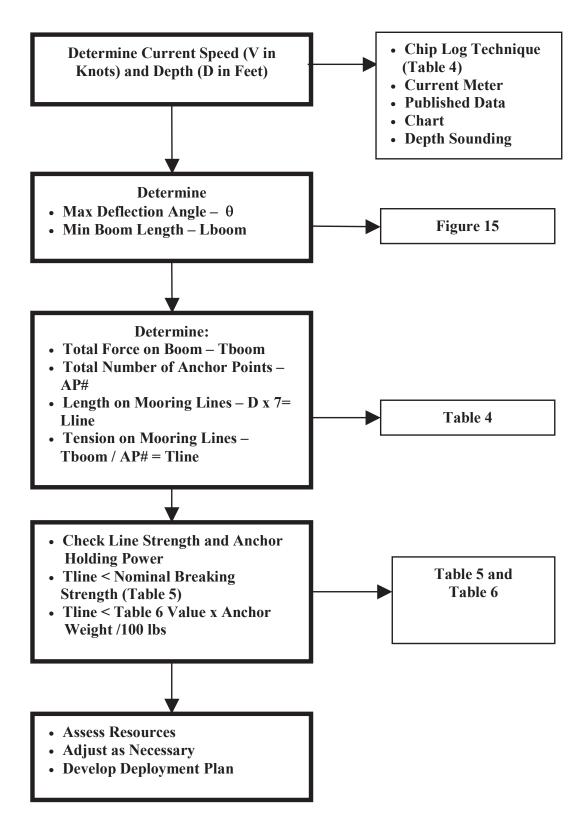
- Current Speed (V in knots) and Water Depth (D in feet)
- Profile Length-width that needs to be boomed: This is the value X in the bottom of figure 15.
- Maximum Deployment Angle of the boom (from Figure 15 or Table 4),
- Minimum Length of Boom required (Lboom from Table 4),
- Total Force exerted on the boom (Tboom from Table 4), and
- Number of Anchor Points (AP#) required assuming a minimum of 50 feet of spacing (AP# from Table 4).

Mooring Line:

A conservative estimate of the total length of mooring line (Lline) required per anchor point is D X 7. The tension on each mooring line is estimated by Tline = Tboom / AP#.

The tension on each mooring line should then be checked against the lines Nominal Breaking Strength (from Table 5) and the Holding Power of each anchor (from Table 6). The value of the Tline should be less than both these values.

Boat Horsepower:


The horsepower required (HPmin) for a deployment vessel to maintain the boom at this deployment angle in the current can be estimated as follows:

- For an outboard motor: HPmin = Tboom/15
- For an inboard motor: HPmin = Tboom/20
- For a jet drive motor: HPmin = Tboom/10

Anchoring:

Examples of anchoring techniques are shown in Figures 16-18.

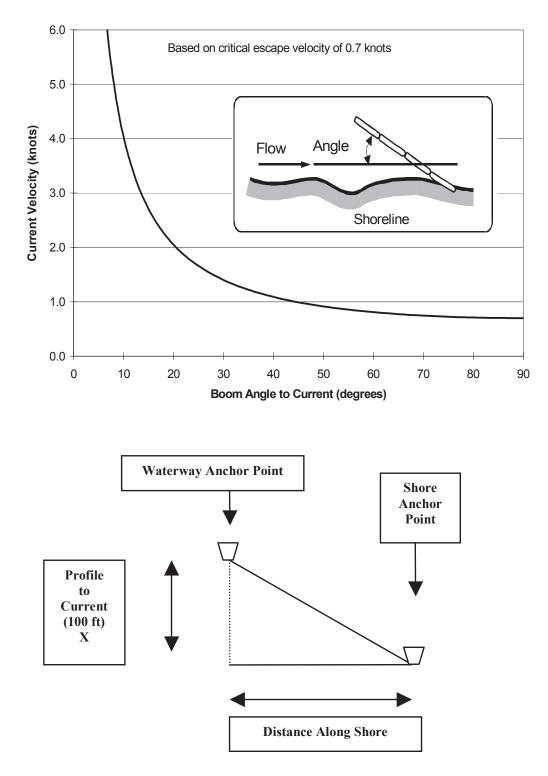


Figure 15. Maximum boom deployment angles required to prevent oil entrainment.

 Table 4. Boom Hydrodynamics Table for 100 foot profile. (For larger values of X, values of Lboom, Tboom and AP# can be easily calculated by multiplying by the multiple of 100 feet (X feet/100 feet)).

Time to	Velocity	Max	Boom	T=Total Force on Boom (pounds)			Total For	Anchors		
Drift 100	(Knots)	Boom	Length	(wit	hout Waves)) K=2	(w	if Placed		
Feet		Deflection	Required	per 10	00 ft. of boom	n length	per 10	0 ft. of boom	length	every
(Seconds)		Angle	for 100 ft.	6 inch	12 inch	18 inch	6 inch	12 inch	18 inch	50 ft.
		(Degrees)	Profile to	boom	boom	boom	boom	boom	boom	or less
			Current	draft	draft	draft	draft	draft	draft	
			(feet)							
100	0.5	90	100	25	50	75	50	100	150	3
60	1.0	45	150	71	141	212	142	282	424	4
40	1.5	30	225	112	225	338	224	450	676	6
30	2.0	20	300	137	274	410	274	548	820	7
20	3.0	13	450	202	405	607	404	810	1214	10
15	4.0	10	625	284	567	851	568	1134	1702	14
12	5.0	8	725	348	696	1004	696	1392	2008	16
10	6.0	7	875	438	877	1316	876	1574	2632	18

Equations for Boom Force (Tboom) in Table 4

For a quick approximate load on a boom that is anchored at an angle of between 10 and 30 degrees to the current, use the following formula:

Τ=	$K * A * V^2$ where:	Т	=	tensile force, lb _f
				constant, lb _f /(ft ² x knots ²)
		Α	=	projected area of the submerged
				portion of the boom, ft ²
		V	=	tow speed, knots

The projected area of the boom was calculated based on the boom draft, and the length of the boom normal to the water current (i.e., the direction of travel):

A = d * L * sin θ where:	A = projected area of the submerged portion of the boom, ft^2
	d = boom draft, feet
	L = boom length, feet (100 ft)
	θ = diversion angle (10°, 20°, 30°)

.

Table 5.	Nominal	line breaking	strengths	(pounds).
----------	---------	---------------	-----------	-----------

Diameter (inches)	Manila	Polypropylene (Three-Strand)	Nylon (Triple Strand)	Nylon (Double Braid)	Polyester (Double Braid)
5/16	900	1700	2300	3400	2400
1/2	2380	3800	5600	8500	5750
5/8	3960	5600	8910	15200	9000
1	9000	13000	23000	26500	26800
2	22500	32000	60000	74000	69900

Table 6. Anchor holding power as a multiple of dry weight for100 pounds.

Anchor Type	Soft Soils	Hard Soils
Danforth/LWT	12.6	31.6
STATO/NAVMOOR	27.7	25-33
Navy Stockless	3.5	11

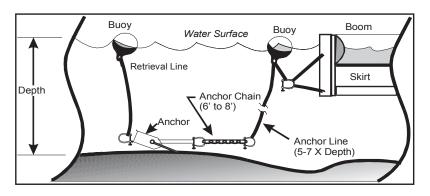


Figure 16. Typical boom mooring configuration.

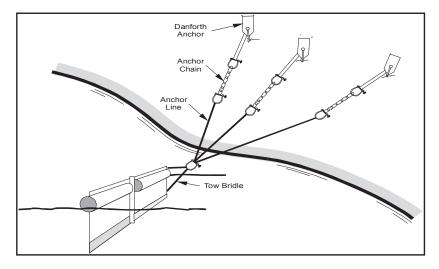


Figure 17. Mooring boom with multiple anchors.

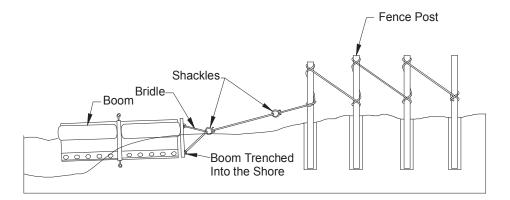


Figure 18. Typical shoreline boom mooring system using posts.

Table 7. Fast water worksheet.

FAST WATER WORK-SHEET	1.Inciden	t Name:	:	2.D	2.Date/time prepared:					3.Operat	tional Period	4.Attachr	nents			
5. Fast Water Type			Riv	ers/Cana	ls (non-tio	lal) 🗌					Culverts/Cr		stal areas 🗌 Ha	arbors/Bays [
	Oil Type		Oil Amo	unt	Temperat °F	ure	Humidity %	Evaporat 24 hour			Wind mph)	Visibility (Ft)	Rain, Sno		Water (°F) emperature	Other
 Background Info 																
 Safety Hazards 				Wate	er 🗌 Viole	ence 🗌	Excavation	Biomedi	cal waste	e and/o	or needles	🗌 Fatigue 🗌	Ionizing Rad C Other (specify)		
8. Personal Protection		-	protect	tion 🗌 Fa	all protect	on 🗌	er length resis Water 🗌 Sun	tant gloves	U Level	D [_] ts [] [Dry Suits 🗌	tion 🔲 Cold V Portable first	VX Gear □ Lev aid kits □ Oth	er (specify)	sh Suits 🔲 I	
9. Potential Booming Locations	ETA Oil Impact	Colle	tural ection pint	Shorelir wave energy	Spe	rrent ed & ection	Access	Water Depth	Tida Influer		Bottom Amenable to Anchors	Debris, Ice	Shore Sensitivity	Historical Economic Concern	Nav Traffic	Strategy Selec- tion
		Yes No		High [Med [Low [Land Water Air				Yes D No D	High Med Low	High 🗌 Med 🔲 Low 🔲	High Med Low	High Med Low	
		Yes No		High [Med [Low [Land Water Air				Yes □ No □	High 🗌 Med 🔲 Low 🔲	High □ Med □ Low □	High □ Med □ Low □	High 🗌 Med 🔲 Low 🔲	
10. Selection Strategies		Cur	rrent < 2	Knots			Curr	rent > 2 Kno	ots			Roon	n to Maneuver		Pos	llection sible on site Sides
Rivers/Canals (non-tidal)	Sor	inche bents (i Exclusio	ies) (SDE isolated a on Boom	ming (Ski 3 < 12) areas) (S ning (EXB ing (ECB)	RB))	inches) (SDB < 6)							n Booming CHV)			
Rivers/Canals (tidal)		ouble SI	DB < 12	, ECB, SF		Double S			ouble SDB < 6, CSC			SK				CHV
Small Streams/ Creeks/Culverts	Underf	Fill, low/Ove	, Dams, V erflow Da SRB	Weirs ams (UFI	D/OFD)								SK (small)			
Coastal Areas	ENC		< 12 (no	waves),	SRB			CSC					SK			
Harbor/Bays			< 12, EC				-	DB < 6, CS0	-				SK		(CHV
Breakwaters/ Harbor Entrances	SDB < 1		B, SRB, I UFD, OF	Fill, Dams FD	s, Weirs,		SD)B < 6, CS(SK		(CHV
Prepared by:									Page		of	<u> </u>				

Γ

CONVERSIONS AND EQUIVALENTS

AREA (s=statute, n=nautical)							
Multiply	by	to derive					
meters ²	10.76	feet ²					
feet ²	0.0929	meters ²					
kilometers ²	0.386	s. miles ²					
s. miles ²	2.59	kilometers ²					
s. miles ²	0.7548	n. miles ²					
n. miles ²	1.325	s. miles ²					
kilometers ²	0.2916	n. miles ²					
n. miles ²	3.430	kilometers ²					

TEMPERA	ΓURE
Calculate	To derive
5/9(°F-32°)	°C
9/5°C+32°	°F

VOLUME							
multiply	by	to derive					
barrels	42	gallons					
barrels	5.615	feet ³					
barrels	158.9	liters					
barrels	0.1589	meters ³					
feet ³	7.481	gallons					
gallons	3.785	liters					

WEIGHT						
multiply	by	to derive				
kilograms	2.205	pounds				
metric tons	0.984	long tons				
metric tons	1,000	kilograms				
metric tons	2,205	pounds				
long tons	1,016	kilograms				
long tons	2240	pounds				
short tons	907.2	kilograms				
short tons	2,000	pounds				

	Barrels/Lon	g Ton		Notes:
	Range	Average	•	1 Long Ton equals 2,200
Crude Oils	6.7 - 8.1	7.4		lbs.
viation Gasolines	8.3 - 9.2	8.8	•	As a general
Motor Gasolines	8.2 - 9.1	8.7		approximation, use 7 bbl.
Kerosenes	7.7 - 8.3	8.0		(300 U.S. gallons) per
Gas Oils	7.2 - 7.9	7.6		metric ton of oil.
Diesel Oils	7.0 - 7.9	7.5	•	6.4 barrels/long ton is
Lubricating Oils	6.8 - 7.6	7.2		neutrally buoyant in fresh
Fuel Oils	6.6 - 7.0	6.8		water. Open ocean neutral
sphaltic Bitumens	5.9 - 6.5	6.2		buoyancy values are
				generally in the 6.21-6.25
phantic Bitumens	5.9 - 0.5	0.2		5 5

Specific Gravity < 1 or an API > 10 indicates product is lighter than fresh water. API Gravity = (141.5/Specific Gravity) – 131.5				
Weight of Fresh Water: pounds/gallon	8.3	Note: Exact weight depends on temperature and		
Weight of Sea Water: pounds/gallon	8.5	salinity.		

Γ

Standard Term	Approx. Fil	Approx. Film Thickness		Approx. Quantity of Oil in Filr	
Stanuaru Term	Inches	Mm	Approx. Quantity of On in Fin		
Barely Visible	0.0000015	0.00004	25 gals/mile ²	44 liters/km ²	
Silvery	0.000003	0.00008	50 gals/mile ²	88 liters/km ²	
Slight Color	0.000006	0.00015	100 gals/mile ²	176 liters/km	
Bright Color	0.000012	0.0003	200 gals/mile ²	351 liters/km	
Dull	0.00004	0.001	666 gals/mile ²	1,168 liters/kn	
Dark	0.00008	0.002	1,332	2,237 liters/kn	
			gals/mile ²		

COMMONLY-USED EQUATIONS		
Circle: Area = 3.14 x radius ² Circumference = 3.14 x diameter Sphere/Tank Area = 4 x 3.14 x radius ² Volume = 1.33 x 3.14 x radius ³	Cylinder/Pipe/Tank Volume = 3.14 x radius ² x length	
	Rectangle/Square Area = length x width	
	Cube/Block/Tank Volume = length x width x height	